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Summary: Acyclic and cyclic, aliphatic or aromatic, 4- or 
5-alkenoic acids cyclize in high yield to 5- or 6-membered 
unsaturated lactones using 5 mol % Pd(OAc)z, 2 equiv of 
NaOAc, and 1 atm of 02. 

The cyclization of alkenoic acids to unsaturated lactones' 
is a very valuable synthetic transformation most commonly 
effected by two-step processes involving either halolac- 
tonization-dehydrohalogenation2 (eq 1, X = Br, I), sele- 

nolactonization-oxidationzc~d~~~3 (eq 1, X = SeR), or 
sulfenolactonization-oxidation (eq 1, X = SR).3b1g*4 The 
halolactonization process requires 1 equiv of halogenating 
agent and a relatively strong base to effect elimination,2i 
and the latter step is known to generate the starting 
alkenoic acid on occasions.* Selenolactonization requires 
stoichiometric amounts of oxidants and toxic selenium 
reagents and generates toxic side products. The corre- 
sponding sulfur process requires stoichiometric amounts 
of relatively unstable sulfur reagents, as well as a base, 
gives dirtier reactions and lower yields, and requires high 
temperatures to effect elimination. 

* Abstract published in Advance ACS Abstracts, September 1,1993. 
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It appeared to us that analogous chemistry might be 
effected in one synthetic step employing only catalytic 
amounts of palladium via acyloxypalladation and subse- 
quent, immediate, room-temperature palladium hydride 
elimination (eq 1, X = PdOAc).6 While there are a number 
of examples of the intramolecular acyloxypalladation of 
alkenoic acids to form lactones? including the low-yield 
cyclizations of 4-alkenoic acids to butenolides (eq 2)' and 
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0-(2-alkenyl)benzoic acids to isocoumarins (eq 3),8 this 
approach has not been developed as a good, general, 
catalytic route to unsaturated lactones. We now report 
an experimentally simple, very mild, but versatile, pal- 
ladium-catalyzed procedure to effect just such a conver- 
sion. 

Initial model studies employing carboxylic acid 1 and 
1 equiv of Pd(0Ac)z in a variety of polar solvents proved 
successful, with the best results being obtained in DMSO 
(80% yield). Since the palladium hydride presumably 
generated during this process is expected to rapidly 
decompose to Pd(O), a reoxidant is required if the process 
is to be catalytic in palladium. This was effectively 
accomplished by employing 5 mol % Pd(0Ac)z in the 
presence of 2 equiv of Cu(0Ac)z under an atmosphere of 
oxygen in DMSO (57% yield). Still better results were 
achieved by adding 2 equiv of NaOAc (80% yield). We 
subsequently observed that even better yields could be 
achieved by reducing the amount of Cu(0Ac)z to 10 mol 
% (90% yield) or omitting i t  completely (86% yield). 
Oxygen alone is remarkably efficient in reoxidizing 
palladium under our reaction conditions. 

This latter method proved very efficient for the cy- 
clization of a wide variety of alkenoic acids as noted in 
Table I. Monocyclic, fused, and bridged bicyclic, and 
spirocyclic lactones bearing 5- or 6-membered rings are all 
formed readily. Mono-, di-, and trisubstituted alkenes 
can be employed in this process. However, preliminary 
attempts to close 4-, 7-, and 12-membered rings have thus 
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Table I. Pallulium-Catalyzed Cyclization of Alkenoic Acids to Unsaturated Lactones. 

entry alkenoic acid time (h),?'(OC) % isolated yield (ratio) 
1 

2 

3 

4 

5 

6 
7 

8 

9 

10 

11 

12 

13 

14 

15 

0"""'" 
r C O n H  

(E)-CHsCH=CH(CHz)zCOzH 

6 

% . 

24,25 

24,25 

24,80 

48,25 

48,25 

12,25 
168,25 

36,80 

24,80 

48,80 

12,25 

12,25 

72,80 

48,80 

48,25 

3 : 1  

a0 

86 

90 

91 

81 

78 

81 
82 

56 

81 

68 

82 

80 

71 

18 

90 

a All reactions were run using 0.5 mmol of alkenoic acid, 1.0 mmol of NaOAc, and 5 mol % of Pd(0Ac)z in 10 mL of DMSO under 1 atm 

five-membered rings are more easily closed than six- 
membered rings (compare entries 1 and 9). 

The products of several of these palladium cyclization 
reactions are quite surprising. First, the cyclization of 
3-cyclohexenecarboxylic acid is observed to give two 
bicyclic lactones (entry 81, while previous work on iodo-,% 
sulfeno-,ab and ~elenolactonization~~~p of this acid afforded 
the [3.2.llbicyclic lactone almost exclusively. As noted 
earlier, (E)-4-hexenoic acid reacts with LizPdC4 to afford 
the butenolide (eq 2): but under our conditions only the 
vinyl valerolactone is formed (entry 4). Analogous results 
are observed for (E)- and (a-4-decenoic acid (entries 5 
and 6). Note that only the @)-alkene is formed in the 
latter two reactions. While the cyclization of 042- 
cyclopenteny1)benzoic acid affords the anticipated product 

of oxygen. b All new producta gave appropriate lH and 13C NMR, IR, and mass spectral analysis data. 
far failed. No cyclization has been observed for 3-butenoic 
acid or 4-pentenoic acid, although these substratesundergo 
halo-, seleno-, and sulfenolactonization and have previously 
been cyclized by LiaPdC4 (see eq 2) to the corresponding 
b~tenolides.~ While the 5-endo-trig halo-& and seleno- 
la~tonizat ion~~ of l-cyclopenteneacetic acid and l-cyclo- 
hexeneacetic acid have been successful, the palladium- 
catalyzed cyclization of these systems fails, presumably 
due to the strain present in the organopalladium inter- 
mediate and the reversibility of the acyloxypalladation 
reaction.Q 

The relative reactivity of the alkenes generally follows 
the order: disubstituted > trisubstituted > monosubsti- 
tuted. There appears to be a fine balance between the 
effects of electron density and steric hindrance. In general, 
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(entry 1 l), o-( 1-cyclopenteny1)bic acid produced solely 
the product of apparent 6-endo-trig cyclization and 
subsequent exocyclic palladium hydride elimination (entry 
12). No phthalide or isocoumarin product was observed. 
On the other hand, 5-methyl-4-hexenoic acid cyclizes 
cleanly to the 5-membered ring lactone under our con- 
ditions (entry 7) but affords the 5- and 6-membered ring 
lactones upon ~elenolactonization.3~ 

The cyclization of o-allylbenzoic acid was even more 
surprising. Hegedus and co-workers have previously 
cyclized this substrate to 3-methylismumarin using either 
stoichiometric amounts of PdCL2CH3CN plus Na2C03 
or 2 mol % PdC12*2CH&N in the presence of Cu- 
(OAc)rH20, Na2CO3, and 0 2  (eq 3L8 To our great surprise, 
we observed only the Z-phthalide product in high yield 
(entry 13). This appears to be a particularly useful route 
to the naturally-occurring 3-alkylidenephthalide ring 
system.'O Formation of the 5-membered ring lactone 
suggested that perhaps the starting acid was first isomer- 
izing to o-(1-propeny1)benzoic acid which then affords the 
observed product. However, cyclization of the latter 
substrate afforded only 3-methylieocoumarin (entry 14). 
It appears that the phthalide product of entry 13 arises 
by r-allylpalladium formation," intramolecular carbox- 
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ylate displacement of palladium, and subsequent double- 
bond isomerization. It is possible that other products, 
particularly those of entries 8 and 12, are also being formed 
by similar r-allylpalladium processes. 

While 2-vinylbenzoic acid has been cyclized previously 
by palladium chloride to afford a 31 mixture of isocou- 
marin and 3-methylene phthalide? under our conditione 
the ismumarin is the sole product isolated in 90 % yield 
(entry 15). It is quite clear that the mechanism of our 
palladium acetate-catalyzed process is significantly dif- 
ferent from that of the palladium chloride based meth- 
odology reported previously. 
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